Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.
نویسندگان
چکیده
A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor.
منابع مشابه
The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal.
The simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process was validated to potentially remove ammonium and COD from wastewater in a single, oxygen-limited, non-woven rotating biological contactor (NRBC) reactor. An ammonium conversion efficiency of 79%, TN removal efficiency of 70% and COD removal efficiency of 94% were obtained with the nitrogen and COD loading rate of...
متن کاملSimultaneous Nitrification and Denitrification Associated Phosphorus Uptake Properties of Sludge Subjected to EBPR with Efficient Micro Aeration
Simultaneous nitrification and denitrification (SND) under low dissolved oxygen (DO) and anaerobic/aerobic(anoxic) enhanced phosphorus removal (EBPR) are two processes that can significantly reduce the energy and carbon required for nutrient removal. The combination of the two processes is expected to achieve biological nutrient removal with minimal requirement of oxygen and carbon. In this stu...
متن کاملSimultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant.
The occurrence of simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) observed in a single partially aerated full-scale bioreactor treating landfill-leachate is reported in this paper. At present, the full-scale bioreactor is treating an average leachate flow of 304 m(3)d(-1) with a sludge retention time between 12 and 18d. The average COD, NH(4)(+)-N and...
متن کاملAmbient temperature SNAD process treating anaerobic digester liquor of swine wastewater.
In present study, effluent from anaerobic digestion of swine wastewater was treated by the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process using a lab scale 5L sequencing batch reactor (SBR) under ambient temperature. The fluctuation of anaerobic digester liquor quality (COD, 387 ± 145 mg/L; TKN, 662 ± 190 mg/L; NH₄(+)-N, 519 ± 134 mg/L) and t...
متن کاملDevelopment of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor.
Simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed in a sequential batch reactor (SBR) and the influence of hydraulic retention time (HRT) on the SNAD process was investigated. Around 96% NH(4)(+)-N removal and 87% COD removal were observed at 9 d HRT. Marginal decreases in the removal efficiencies were observed when the HRT was reduced to 3d or the loa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 130 شماره
صفحات -
تاریخ انتشار 2013